Funktionen

Erinnerung: Ein *Paar* ist definiert durch $\langle x, y \rangle := \{\{x\}, \{x, y\}\}.$

Definition: Betrachte Mengen X und Y. Eine Teilmenge $GX \times Y$ mit der Eigenschaft

$$\forall x \in X \exists ! y \in Y : \langle x, y \rangle \in G$$

heisst eine Funktion. Oft bezeichnen wir diese mit $g: X \to Y$ und schreiben für $\langle x, y \rangle \in G$ kurz g(x) = y.

Proposition-Definition: Zu jeder solchen Funktion g gehört ein Definitionsbereich, nämlich die Menge

$$Def(g) = X := \{ x \in \bigcup \bigcup G \mid \exists y \colon \langle x, y \rangle \in G \}.$$

Vorsicht: In dieser Theorie ist der Zielbereich der Funktion durch den Graphen nicht eindeutig bestimmt.

Proposition-Definition: Für jede solche Funktion und jeder Teilmenge $X' \subseteq \text{Def}(g)$ erhalten wir die *auf* X' eingeschränkte Funktion g|X' mit dem Graphen

$$G \cap (X' \times \bigcup \bigcup G).$$

Klassenfunktionen

Definition: Betrachte eine Formel $\varphi(x,y)$ mit freien Variablen x und y, so dass wir beweisen können:

$$\forall x \,\exists ! y \colon \varphi(x,y).$$

Die Abbildung F, welche in einem Modell unserer Theorie jedem x das durch diese Formel charakterisierte Element F(x) := y zuordnet, heisst die durch φ bestimmte Klassenfunktion oder Operation.

Vorsicht: Dies ist keine Menge, also keine Funktion wie oben innerhalb unserer Theorie!

Vorsicht: Wenn man von einer Klassenfunktion spricht, meint man eigentlich die dahinterstehende Formel.

Beispiel: Die Potenzmenge $\mathcal{P}(x)$ einer Menge x ist charakterisiert durch die Formel

$$\mathcal{P}(x) = y \iff \varphi(x, y) := (\forall z \colon z \in y \longleftrightarrow z \subseteq x).$$

Beispiel: Die Vereinigungsmenge $\bigcup x$ einer Menge x ist charakterisiert durch die Formel

$$\int x = y \iff \varphi(x, y) := (\forall z \colon z \in y \longleftrightarrow (\exists t \colon t \in x \land z \in t)).$$

Ersetzungsaxiom: Für jede Klassenfunktion F und jede Menge A ist $\{F(x) \mid x \in A\}$ eine Menge; genauer: Es existiert eine Menge B mit der Eigenschaft

$$\forall y \colon (y \in B \longleftrightarrow \exists x \in A \colon \varphi(x,y)).$$

Durch das Extensionalitätsaxiom ist diese eindeutig bestimmt.

Folge: Für jede Klassenfunktion F und jede Menge A ist F|A eine Funktion, genauer: Es existiert genau eine Menge G, welche der Graph einer Funktion ist, und für die gilt

$$\forall x \, \forall y \colon \langle x, y \rangle \in G \longleftrightarrow (x \in A \land \varphi(x, y)).$$

Bedeutung: Eine Klassenfunktion induziert also auf jeder Menge eine echte Funktion im Sinne unserer Theorie. Auf diese können wir alle Methoden der Mengenlehre anwenden, auf die Klassenfunktion dagegen nicht.

Variante: Wendet man das Obige an auf Tupel $x = (x_1, \dots, x_n)$, so erhält man n-stellige Funktionen und Klassenfunktionen.

Ordnungsrelationen

Definition: Eine *Ordnung* oder *Partialordnung* auf einer Menge X ist eine zweistellige Relation \leq mit den Bedingungen:

$$\forall x \in X : \quad x \leqslant x$$
 (Reflexivität)
$$\forall x, y \in X : \quad x \leqslant y \ \land \ y \leqslant x \longrightarrow x = y$$
 (Antisymmetrie)
$$\forall x, y, z \in X : \quad x \leqslant y \land y \leqslant z \longrightarrow x \leqslant z$$
 (Transitivität)

Eine Totalordnung oder lineare Ordnung ist eine Ordnung, für die zusätzlich gilt:

$$\forall x, y \in X : \quad x \leqslant y \ \lor \ y \leqslant x.$$
 (Totalität)

Im folgenden fixieren wir eine Menge X mit einer Ordnung \leq .

Definition: Für alle $x, y \in X$ definieren wir

$$\begin{array}{ll} x \geqslant y & :\iff y \leqslant x \\ x < y & :\iff (x \leqslant y) \land (x \neq y) \\ x > y & :\iff y < x \end{array}$$

Die Relation < heisst die zu ≤ gehörende strikte Ordnung.

Übung: Formuliere äquivalente Axiome für < anstatt \le .

Definition: Ein Element $x \in X$ mit der Eigenschaft

Proposition: Existiert ein kleinstes (bzw. grösstes) Element, so ist es eindeutig bestimmt.

Proposition:

- (a) Jedes kleinste Element von X ist minimal.
- (b) Jedes grösste Element von X ist maximal.

Proposition: Ist \leq eine Totalordnung, so gilt:

- (a) Ein Element $x \in X$ ist ein kleinstes Element genau dann, wenn es minimal ist.
- (b) Ein Element $x \in X$ ist ein grösstes Element genau dann, wenn es maximal ist.

Vorsicht: Ist \leq keine Totalordnung, so kann es mehrere minimale (bzw. maximale) Elemente geben.

Beispiele:

- (a) (\mathbb{R}, \leq) ist eine Totalordnung ohne minimales oder maximales Element.
- (b) $([0, \infty[, \le)])$ ist eine Totalordnung mit minimalem Element 0 aber ohne maximales Element.
- (c) $([0,1], \leq)$ ist eine Totalordnung mit minimalem Element 0 und maximalem Element 1.
- (d) (\emptyset, \leq) ist eine Totalordnung ohne minimales oder maximales Element.
- (e) Die Menge aller abzählbar unendlichen Teilmengen von \mathbb{R} mit der Inklusionsrelation \subseteq ist eine nicht totale Partialordnung ohne minimales oder maximales Element.

Sei jetzt X eine Menge mit mehr als einem Element.

- (f) $(\mathcal{P}(X), \subseteq)$ ist eine nicht totale Ordnung mit kleinstem Element \varnothing und grösstem Element X.
- (g) $(\mathcal{P}(X) \setminus \{\emptyset, X\}, \subseteq)$ ist nicht totale Ordnung ohne kleinstes oder grösstes Element.

Betrachte eine Menge X mit Partialordnung \leq und eine Teilmenge $Y \subseteq X$.

Proposition-Definition:

- (a) $\leq \cap (Y \times Y)$ ist eine Partialordnung auf Y, genannt die auf Y induzierte Partialordnung $\leq |Y|$.
- (b) Ist \leq eine Totalordnung, so ist \leq |Y eine Totalordnung.
- (c) Ist $\leq |Y|$ eine Totalordnung, so heisst Y eine Kette.
- (d) Ein Element $x \in X$ heisst obere Schranke von Y, falls gilt $\forall y \in Y : y \leq x$.
- (e) Ein Element $x \in X$ heisst untere Schranke von Y, falls gilt $\forall y \in Y : x \leq y$.
- (f) Die Menge Y heisst ein $An fangssegment \ von \ X$, falls gilt $\forall y \in Y \ \forall x \in X \colon (x \leqslant y \longrightarrow x \in Y)$.
- (f) Jedes $x \in X$ bestimmt die Anfangssegmente

$$X_{\leqslant x} := \{ x' \in X \mid x' \leqslant x \},$$

$$X_{< x} := \{ x' \in X \mid x' < x \}.$$

Wohlordnungen

Für das folgende siehe auch [Ebbinghaus: Einführung in die Mengenlehre, Kapitel VI].

Definition: Eine Wohlordnung auf einer Menge X ist eine Totalordnung, für die jede nichtleere Teilmenge ein kleinstes Element besitzt.

Beispiel: (a) Für jede natürliche Zahl n die Menge $n = \{0, 1, \dots, n-1\}$ mit der üblichen Relation \leq .

(b) Die Menge der natürlichen Zahlen $\mathbb N$ mit der üblichen Relation \leqslant . (später)

Proposition: Jede Teilmenge X' einer Wohlordnung X ist eine Wohlordnung.

Erinnerung:

Beweis durch vollständige Induktion: Um für jede natürliche Zahl n eine Aussage A(n) zu beweisen, genügt es, für jedes n zu zeigen:

Gilt
$$A(n')$$
 für alle $n' \ge 0$ mit $n' < n$, so gilt auch $A(n)$.

Konstruktion durch Rekursion: Um für jede natürliche Zahl n ein mathematisches Objekt B(n) zu konstruieren, genügt es, für jedes n

eine Konstruktion von B(n) unter Benützung von B(n') für alle n' < n anzugeben.

 ${f Satz:}$ (Induktion über eine Wohlordnung) Für jede wohlgeordnete Menge X und jedes einstellige Prädikat P gilt

$$\left[\forall x \in X \colon \left(\forall y \in X_{< x} \colon P(y)\right) \longrightarrow P(x)\right] \longrightarrow \left[\forall x \in X \colon P(x)\right].$$

Rekursionstheorem: Für jede wohlgeordnete Menge X und jede zweistellige Klassenfunktion F existiert eine eindeutige Funktion f mit Definitionsbereich X, so dass gilt:

$$\forall x \in X \colon f(x) = F(x, f|X_{< x}).$$

Bemerkung: Eigenschaften der so konstruierten Funktion beweist man durch Induktion über die Wohlordnung: Sei zum Beispiel P(x) ein Prädikat (eventuell mit Parametern) mit der Eigenschaft

$$\forall x \in X \, \forall g \, \text{Funktion auf } X_{\leq x} \colon (\forall y \in X_{\leq x} \colon P(g(y))) \longrightarrow P(F(x,g)).$$

Mit Induktion folgt dann $\forall x \in X : P(f(x))$.

Beispiel: Sei Z eine Menge, so dass für jedes $x \in X$ und jede Funktion g mit $\operatorname{Bild}(g) \subseteq Y$ gilt $\operatorname{Bild}(F(x,g)) \subseteq Y$. Dann gilt $\operatorname{Bild}(f) \subseteq Z$.